Федеральное государственное образовательное бюджетное учреждение высшего образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Калужский филиал Финуниверситета

Кафедра «Бизнес-информатика и высшая математика»

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ, НАПИСАНИЮ И ОФОРМЛЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА»

Для студентов, обучающихся по направлению подготовки 38.03.05 –Бизнес-информатика ОП «Цифровая трансформация управления бизнесом»

Методические рекомендации по подготовке, написанию и оформлению контрольной работы по дисциплине «Математика» предназначены для студентов, обучающихся по направлению подготовки 38.03.05 —Бизнес-информатика, Образовательная программа «Цифровая трансформация управления бизнесом» по очной форме обучения.

Составитель Никаноркина Наталия Владимировна, к.п.н., доцент, доцент кафедры «Бизнес-информатика и высшая математика»

Рекомендовано Учебно-методическим советом Калужского филиала Финуниверситета (протокол №1 от 29.08.2024)

Одобрено кафедрой «Бизнес-информатика и высшая математика» Калужского филиала Финуниверситета

(протокол №1 от 28.08.2024)

СОДЕРЖАНИЕ

Общие положения	4
Порядок выполнения контрольной работы	4
Требования к выполнению контрольной работы	5
Критерии оценки контрольной работы	5
Структура контрольной работы	6
Требования к оформлению контрольной работы	6
Выбор варианта контрольной работы	7
Задания контрольной работы	7
Приложения	20
Приложение 1. Титульный лист контрольной работы	20

ОБЩИЕ ПОЛОЖЕНИЯ

Контрольная работа является одной из форм внеаудиторной самостоятельной работы студентов и реализуется в письменном виде с использованием информационных технологий.

Контрольная работа отражает степень освоения студентами учебного материала конкретных тем дисциплины и оформляется в форме решения практических задач, в том числе профессионально-ориентированных.

Цель выполнения работы - овладение студентами навыками решения типовых расчетных задач, закрепление умений самостоятельно работать с различными источниками информации, формирование навыков использования инструментальных средств обработки статистических данных, проверка сформированности компетенций.

Содержание заданий контрольной работы охватывает материал основных тем дисциплины Математика. Варианты работы равноценны по объему и сложности.

Оценка контрольных работ проводится в процессе текущего контроля успеваемости студентов.

ПОРЯДОК ВЫПОЛНЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ

Контрольная работа выполняется обучающимся в соответствии с заданием и методическими рекомендациями. Написанию контрольной работы должно предшествовать изучение основных тем курса, освоение способов решения типовых задач.

Сроки представления контрольной работы на проверку определяются календарным учебным графиком и приказом «Об организации учебного процесса на соответствующий учебный год».

Не допускается предъявление контрольной работы на проверку во время экзамена.

Выполненную работу обучающийся сдает для регистрации на кафедру, где она регистрируется в соответствующем журнале.

По результатам проверки работы выставляется оценка «зачтено» или «не зачтено» на титульном листе контрольной работы, заносится в «Ведомость учета проверенных работ».

Не зачтенная контрольная работа возвращается обучающемуся вместе с указаниями преподавателя по устранению недостатков, для повторного выполнения работы.

На титульном листе повторно выполненной контрольной работы старший лаборант кафедры делает пометку «повторно» и передает для проверки преподавателю кафедры.

ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

- развернутые решения всех задач с обоснованиями;
- выбор и реализация рациональных способов решения;
- самостоятельность выполнения.

КРИТЕРИИ ОЦЕНКИ КОНТРОЛЬНОЙ РАБОТЫ

Критериями оценки контрольной работы служат следующие параметры:

- правильное выполнение всех заданий;
- использование рациональных способов решения;
- полнота аргументации использованных методов решения задач и функций табличных процессоров;
- качество оформления работы в соответствии с предъявляемыми требованиями.

Оценка «зачтено» выставляется студенту, являющемуся автором домашнего творческого задания, соответствующего всем предъявляемым требованиям, в том числе формальным. Проверенная преподавателем работа должна быть защищена студентом. В рамках процедуры защиты студент должен уметь объяснить выбранную им последовательность этапов решения задачи, раскрыть суть математических понятий и утверждений, используемых на различных этапах решения; охарактеризовать возможности функций табличных процессоров, применённых при выполнении работы.

Оценка «не зачтено» выставляется студенту, являющемуся автором работы, не соответствующей предъявляемым требованиям. Оценка «не зачтено»

выставляется также, если студент: а) выполнил менее 50% заданий; б) не обосновал и не охарактеризовал реализуемые методы решения.

Оценка «не зачтено» выставляется, если возникли обоснованные сомнения в том, что студент является автором представленной работы (не ориентируется в тексте работы; не может дать ответы на уточняющие вопросы, касающиеся теоретических предложений и формул, использованных при решении задач и т.д.). Такое решение принимается и в том случае, если работа не соответствует предъявляемым требованиям.

СТРУКТУРА КОНТРОЛЬНОЙ РАБОТЫ

- титульный лист (см. образец в Приложении или на сайте филиала);
- основное содержание работы (выполнение заданий с подробными пояснениями и выводами);

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

- 1. Задания контрольной работы оформляются на листах бумаги формата A4 в виде документа в формате Word (шрифт 12-14, поля: слева 2,5 см, остальные по 2 см, междустрочный интервал 1,5, абзац 1,25).
- 2. Листы, на которых оформляется решение задач контрольной работы следует пронумеровать. Титульный лист (см. образец в приложении 1 или на сайте филиала) не нумеруется.
- 3. Оформление решения каждого задания должно содержать: А) запись условия с указанием номера задачи. Б) запись решения задачи после слова «Решение». К каждому этапу решения должны быть даны развернутые объяснения, описание вводимых обозначений. Используемые формулы должны записываться с необходимыми пояснениями. Отсутствие обоснования при правильном решении влечет снижение оценки. Рисунки и таблицы следует пронумеровать.

- 4. Контрольная работа сдаётся в распечатанном виде на кафедру «Бизнесинформатика и высшая математика» (можно бросить на первом этаже в филиале в специальный ящик или сдать на кафедру, ауд.213 или 220).
- 5. Работа, признанная не отвечающей предъявляемым требованиям, возвращается студенту для доработки. При этом указываются недостатки работы и даются рекомендации по их устранению.

ВЫБОР ВАРИАНТА КОНТРОЛЬНОЙ РАБОТЫ

Номер варианта определяется по последней цифре номера зачетной книжки студента. Если последняя цифра 0, то выбирается вариант 10.

ЗАДАНИЯ КОНТРОЛЬНОЙ РАБОТЫ

Вариант 1

Задание 1. Решите матричное уравнение

$$\left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} + X^T \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix} \right)^T = \begin{pmatrix} 3 & 1 \\ 4 & 1 \end{pmatrix}$$

Задание 2. Вычислите определитель

$$\begin{vmatrix}
0 & -1 & -2 & -3 \\
-1 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
-3 & 0 & 0 & 1
\end{vmatrix}$$

Задание 3. Решите систему уравнений методом Гаусса

$$\begin{cases} x_1 + 3x_2 + x_4 = 5 \\ 2x_1 - x_2 + x_3 - x_5 = 1 \\ 3x_1 + x_2 + x_3 + x_4 - x_5 = 4 \end{cases}$$

Задание 4. Найдите общее решение системы и фундаментальную систему решений.

$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 + x_5 = 0 \\ 2x_1 + x_2 - x_3 + x_4 - x_5 = 0 \\ 3x_1 - x_2 - x_4 - x_5 = 0 \\ x_4 + x_5 = 0 \end{cases}$$

Задание 5. 1) Докажите, что векторы a=(1,0,1), b=(0,1,0), c=(2,3,4) образуют базис пространства R^3 . 2) Найдите координаты вектора m=(1,-3,-3) в этом базисе.

Задание 6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} 3 & 6 \\ 1 & 4 \end{pmatrix}$$

Задание 7. Выясните, при каких значениях параметра **a** квадратичная форма $L(x_1,x_2) = x_1^2 + 4x_2^2 - 2ax_1x_2$

является положительно определённой.

Задание 8. Найдите комплексное число $z = \frac{\overline{(-1-2i)}}{(1-4i)(-3+i)}$

Задание 9. Представьте число $z = -1 - \sqrt{3}i$ в тригонометрической форме и вычислите z^6 .

Задание 10. Приведите уравнение линии второго порядка γ к каноническому виду, определите тип кривой и изобразите ее, если γ : $x^2-4y^2+8x-24y=24$.

Вариант 2

Задание 1. Решите матричное уравнение

$$\left(\begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 3 & -3 \\ 1 & 1 \end{pmatrix} + X^T \begin{pmatrix} 6 & 4 \\ 1 & 1 \end{pmatrix} \right)^T = \begin{pmatrix} 9 & 1 \\ 2 & 1 \end{pmatrix}$$

Задание 2. Вычислите определитель

$$\begin{vmatrix} 2 & 1 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{vmatrix}$$

Задание 3. Решите систему уравнений методом Гаусса

$$\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 = 1\\ x_1 + x_2 + 2x_3 - 3x_4 = 2\\ 3x_1 + 3x_2 - x_3 = -1\\ x_2 + 2x_3 + 2x_4 = -3 \end{cases}$$

Задание 4. Найдите общее решение системы и фундаментальную систему решений.

$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 + 3x_5 = 0 \\ 2x_1 + x_2 - x_3 + 3x_4 - x_5 = 0 \\ 3x_1 - x_2 + x_4 + x_5 = 0 \\ x_4 + x_5 = 0 \end{cases}$$

Задание 5. 1) Докажите, что векторы a=(4,1,-2), b=(2,-3,0), c=(3,1,-2) образуют базис пространства R^3 . 2) Найдите координаты вектора m=(3,8,-4) в этом базисе.

Задание 6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} 1 & 4 \\ 9 & 1 \end{pmatrix}$$

Задание 7. Выясните, при каких значениях параметра **a** квадратичная форма $L(x_1,x_2) = 9x_1^2 + x_2^2 + 4ax_1x_2$

является положительно определённой.

Задание 8. Найдите комплексное число
$$z = \frac{\overline{(3-i)}}{(1-2i)(3-2i)}$$

Задание 9. Представьте число $z = 2 + 2\sqrt{3}i$ в тригонометрической форме и вычислите z^5 .

Задание 10. Приведите уравнение линии второго порядка γ к каноническому виду, определите тип кривой и изобразите ее, если γ : $4x^2-y^2+8x-12y=36$.

Вариант 3

Задание 1. Решите матричное уравнение

$$\left(\begin{pmatrix} 11 & 2 \\ 3 & 1 \end{pmatrix} X^T \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix} \right)^T = \begin{pmatrix} 5 & -1 \\ 5 & 0 \end{pmatrix}$$

Задание 2. Вычислите определитель

$$\begin{vmatrix}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{vmatrix}$$

Задание 3. Решите систему уравнений методом Гаусса

$$\begin{cases} 2x_1 - 2x_2 + x_3 = 1 \\ 3x_1 + 2x_2 - 5x_3 = 0 \\ 4x_1 - x_2 - 2x_3 = 1 \\ x_1 + x_2 + x_3 = 3 \end{cases}$$

Задание 4. Найдите общее решение системы и фундаментальную систему решений.

$$\begin{cases} x_1 + x_2 + x_3 - 3x_4 - 2x_5 = 0 \\ x_1 - x_2 + 2x_3 - 2x_4 = 0 \\ 4x_1 + 2x_2 + 6x_3 + x_4 - 4x_5 = 0 \\ 2x_1 + 2x_2 + 4x_3 + x_4 - 2x_5 = 0 \end{cases}$$

Задание 5. 1) Докажите, что векторы a=(1,1,1), b=(1,1,2), c=(1,2,3) образуют базис пространства R^3 . 2) Найдите координаты вектора m=(6,7,10) в этом базисе.

Задание 6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} 3 & 4 \\ 1 & 3 \end{pmatrix}$$

Задание 7. Выясните, при каких значениях параметра **a** квадратичная форма $L(x_1,x_2) = 2x_1^2 + 8x_2^2 - 4ax_1x_2$

A OUDETERINAŬ

является положительно определённой.

Задание 8. Найдите комплексное число $z = \frac{\overline{(5+3i)}}{(2-i)(-3+2i)}$

Задание 9. Представьте число $z = -\sqrt{3} + i$ в тригонометрической форме и вычислите z^8 .

Задание 10. Приведите уравнение линии второго порядка γ к каноническому виду, определите тип кривой и изобразите ее, если γ : $x^2+9y^2+8x+36y=29$.

Вариант 4

Задание 1. Решите матричное уравнение

$$\left(\begin{pmatrix} 14 & 3 \\ 3 & 1 \end{pmatrix} X^T \begin{pmatrix} 2 & 1 \\ 7 & 4 \end{pmatrix} \right)^T = \begin{pmatrix} 5 & -2 \\ 6 & -1 \end{pmatrix}$$

Задание 2. Вычислите определитель

Задание 3. Решите систему уравнений методом Гаусса

$$\begin{cases} 2x_1 + 3x_2 - x_3 - 3x_4 + x_5 = 1\\ x_1 - 3x_2 + x_3 + x_4 - 2x_5 = 3\\ 9x_1 - x_5 = 2\\ 3x_1 + x_4 = 0 \end{cases}$$

Задание 4. Найдите общее решение системы и фундаментальную систему решений.

$$\begin{cases} x_1 + x_2 - x_5 = 0 \\ x_1 - x_2 + 2x_3 - 3x_4 = 0 \\ 4x_1 + 3x_2 + 6x_3 + x_4 - 4x_5 = 0 \\ 2x_1 + 3x_2 + 4x_3 + x_4 - 3x_5 = 0 \end{cases}$$

Задание 5. 1) Докажите, что векторы a=(1,0,1), b=(4,2,1), c=(1,3,6) образуют базис пространства R^3 . 2) Найдите координаты вектора m=(3,2,-1) в этом базисе.

Задание 6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} 1 & -4 \\ -3 & 5 \end{pmatrix}$$

Задание 7. Выясните, при каких значениях параметра а квадратичная форма

$$L(x_1, x_2) = 2x_1^2 + 8x_2^2 - 4ax_1x_2$$

является положительно определённой.

Задание 8. Найдите комплексное число $z = \frac{\overline{(-3+4i)}}{(-2-i)(3+2i)}$

Задание 9. Представьте число $z = 2 + \sqrt{12}i$ в тригонометрической форме и вычислите z^4 .

Задание 10. Приведите уравнение линии второго порядка γ к каноническому виду, определите тип кривой и изобразите ее, если γ : $16x^2-9y^2+90y-81=0$.

Вариант 5

Задание 1. Решите матричное уравнение

$$\left(\begin{pmatrix} 17 & 4 \\ 3 & 1 \end{pmatrix} X^T \begin{pmatrix} 2 & 1 \\ 9 & 5 \end{pmatrix} \right)^T = \begin{pmatrix} 6 & -3 \\ 7 & -2 \end{pmatrix}$$

Задание 2. Вычислите определитель

Задание 3. Решите систему уравнений методом Гаусса

$$\begin{cases} 2x_1 + 4x_2 - x_3 - 4x_4 + x_5 = 1\\ x_1 - 4x_2 + x_3 + x_4 - 2x_5 = 4\\ 12x_1 + 2x_4 - x_5 = 2\\ 4x_1 + x_4 = 1 \end{cases}$$

Задание 4. Найдите общее решение системы и фундаментальную систему решений.

$$\begin{cases} x_1 + x_2 + 3x_4 = 0 \\ x_1 - x_2 + 2x_3 - 4x_4 = 0 \\ 4x_1 + 4x_2 + 6x_3 + x_4 - 4x_5 = 0 \\ 2x_1 + 4x_2 + 4x_3 + x_4 - 4x_5 = 0 \end{cases}$$

Задание 5. 1) Докажите, что векторы a=(2,1,1), b=(-1,1,0), c=(2,-2,3) образуют базис пространства R^3 . 2) Найдите координаты вектора m=(-1,-4,6) в этом базисе.

Задание 6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix}$$

Задание 7. Выясните, при каких значениях параметра а квадратичная форма

$$L(x_1, x_2) = \frac{1}{2}x_1^2 + 4x_2^2 - 4ax_1x_2$$

является положительно определённой.

Задание 8. Найдите комплексное число $z = \frac{\overline{(-2+3i)}}{(-3+4i)(2-5i)}$

Задание 9. Представьте число $z = \sqrt{3} - i$ в тригонометрической форме и вычислите z^7 .

Задание 10. Приведите уравнение линии второго порядка γ к каноническому виду, определите тип кривой и изобразите ее, если γ : $4x^2+9y^2-40x+36y+100=0$.

Вариант 6

Задание 1. Решите матричное уравнение

$$\left(\begin{pmatrix} 20 & 5 \\ 3 & 1 \end{pmatrix} X^T \begin{pmatrix} 2 & 1 \\ 11 & 6 \end{pmatrix} \right)^T = \begin{pmatrix} 7 & -4 \\ 8 & -3 \end{pmatrix}$$

Задание 2. Вычислите определитель

Задание 3. Решите систему уравнений методом Гаусса

$$\begin{cases} 5x_1 - 5x_2 + x_3 = 1 \\ 3x_1 + 2x_2 - 5x_3 = 0 \\ 4x_1 - x_2 - 5x_3 = 1 \\ x_1 + x_2 + x_3 = 6 \end{cases}$$

Задание 4. Найдите общее решение системы и фундаментальную систему решений.

$$\begin{cases} x_1 + x_2 + 6x_4 + x_5 = 0 \\ x_1 - x_2 + 2x_3 - 5x_4 = 0 \\ 4x_1 + 5x_2 + 6x_3 + x_4 - 4x_5 = 0 \\ 2x_1 + 5x_2 + 4x_3 + x_4 - 5x_5 = 0 \end{cases}$$

Задание 5. 1) Докажите, что векторы a=(1,-2,1), b=(-2,0,4), c=(1,3,3) образуют базис пространства R^3 . 2) Найдите координаты вектора m=(2,1,-3) в этом базисе.

Задание 6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} -3 & 2 \\ 2 & 0 \end{pmatrix}$$

Задание 7. Выясните, при каких значениях параметра а квадратичная форма

$$L(x_1, x_2) = ax_1^2 + 4x_2^2 - 2ax_1x_2$$

является положительно определённой.

Задание 8. Найдите комплексное число $z = \frac{\overline{(-6+4i)}}{(3+2i)(4-2i)}$

Задание 9. Представьте число $z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ в тригонометрической форме и вычислите z^{12} .

Задание 10. Приведите уравнение линии второго порядка γ к каноническому виду, определите тип кривой и изобразите ее, если γ : $9x^2-16y^2-54x-64y=127$.

Вариант 7

Задание 1. Решите матричное уравнение

$$\left(\begin{pmatrix} 26 & 7 \\ 3 & 1 \end{pmatrix} X^T \begin{pmatrix} 2 & 1 \\ 15 & 8 \end{pmatrix} \right)^T = \begin{pmatrix} 9 & -6 \\ 10 & -5 \end{pmatrix}$$

Задание 2. Вычислите определитель

Задание 3. Решите систему уравнений методом Гаусса

$$\begin{cases} 2x_1 + 7x_2 - x_3 - 7x_4 + x_5 = 1\\ x_1 - 6x_2 + x_3 + x_4 - 2x_5 = 7\\ 21x_1 + 8x_4 - x_5 = 2\\ 7x_1 + x_4 = 4 \end{cases}$$

Задание 4. Найдите общее решение системы и фундаментальную систему решений.

$$\begin{cases} x_1 + x_2 + 12x_4 + 3x_5 = 0 \\ x_1 - x_2 + 2x_3 - 7x_4 = 0 \\ 4x_1 + 7x_2 + 6x_3 + x_4 - 4x_5 = 0 \\ 2x_1 + 7x_2 + 4x_3 + x_4 - 7x_5 = 0 \end{cases}$$

Задание 5. 1) Докажите, что векторы a=(1,1,1), b=(1,2,3), c=(1,3,6) образуют базис пространства R^3 . 2) Найдите координаты вектора m=(2,3,1) в этом базисе.

Задание 6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix}$$

Задание 7. Выясните, при каких значениях параметра **a** квадратичная форма $L(x_1,x_2)=6x_1^2+4x_2^2+8ax_1x_2$

является положительно определённой.

Задание 8. Найдите комплексное число $z = \frac{\overline{(6-4i)}}{(-5-4i)(3-5i)}$

Задание 9. Представьте число $z = -1 + \sqrt{3}i$ в тригонометрической форме и вычислите z^6 .

Задание 10. Приведите уравнение линии второго порядка γ к каноническому виду, определите тип кривой и изобразите ее, если γ : $9x^2+4y^2+18x-8y+49=0$.

Вариант 8

Задание 1. Решите матричное уравнение

$$\left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} + X^T \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \right)^T = \begin{pmatrix} 0 & 1 \\ 5 & 1 \end{pmatrix}$$

Задание 2. Вычислите определитель

$$\begin{vmatrix}
-1 & -2 & -3 & -4 \\
-2 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
-4 & 0 & 0 & 1
\end{vmatrix}$$

Задание 3. Решите систему уравнений методом Гаусса

$$\begin{cases} x_1 + 3x_2 = 4 \\ 2x_1 - x_4 = 1 \\ 3x_1 + x_2 + x_3 = 4 \end{cases}$$

Задание 4. Найдите общее решение системы и фундаментальную систему решений.

$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 = 0 \\ 2x_1 + x_2 - x_3 - x_5 = 0 \\ 3x_1 - x_2 - 2x_4 - 2x_5 = 0 \\ x_4 + x_5 = 0 \end{cases}$$

Задание 5. 1) Докажите, что векторы a=(1,1,1), b=(1,1,2), c=(1,2,3) образуют базис пространства R^3 . 2) Найдите координаты вектора m=(6,9,4) в этом базисе.

Задание 6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$$

Задание 7. Выясните, при каких значениях параметра а квадратичная форма

$$L(x_1, x_2) = 2x_1^2 + 4ax_2^2 - 2ax_1x_2$$

является положительно определённой.

Задание 8. Найдите комплексное число $z = \frac{\overline{(-1+3i)}}{(1-4i)(-2+i)}$

Задание 9. Представьте число z = -2 + 2i в тригонометрической форме и вычислите z^{10} .

Задание 10. Приведите уравнение линии второго порядка γ к каноническому виду, определите тип кривой и изобразите ее, если γ : $4x^2-y^2+8x-2y+3=0$.

Вариант 9

Задание 1. Решите матричное уравнение

$$\left(\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix} + X^T \begin{pmatrix} 5 & 3 \\ 1 & 1 \end{pmatrix} \right)^T = \begin{pmatrix} 6 & 1 \\ 3 & 1 \end{pmatrix}$$

Задание 2. Вычислите определитель

$$\begin{vmatrix}
1 & 0 & -1 & -2 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-2 & 0 & 0 & 1
\end{vmatrix}$$

Задание 3. Решите систему уравнений методом Гаусса

$$\begin{cases} x_1 + 3x_2 + 2x_4 = 6 \\ 2x_1 - 2x_2 + 2x_3 - x_5 = 1 \\ 3x_1 + x_2 + x_3 + 2x_4 - 2x_5 = 4 \end{cases}$$

Задание 4. Найдите общее решение системы и фундаментальную систему решений.

$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 + 2x_5 = 0 \\ 2x_1 + x_2 - x_3 + 2x_4 - x_5 = 0 \\ 3x_1 - x_2 = 0 \\ x_4 + x_5 = 0 \end{cases}$$

Задание 5. 1) Докажите, что векторы a=(1,5,2), b=(3,1,4), c=(2,6,-3) образуют базис пространства R^3 . 2) Найдите координаты вектора m=(2,3,1) в этом базисе.

Задание 6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} -1 & -6 \\ 2 & 6 \end{pmatrix}$$

Задание 7. Выясните, при каких значениях параметра **а** квадратичная форма $L(x_1, x_2) = 5x_1^2 + 3ax_2^2 - 6ax_1x_2$

является положительно определённой.

Задание 8. Найдите комплексное число $z = \frac{\overline{(-2+3i)}}{(-2-4i)(1+3i)}$

Задание 9. Представьте число $z = \frac{1}{2} - \frac{\sqrt{3}}{2}i$ в тригонометрической форме и вычислите z^6 .

Задание 10. Приведите уравнение линии второго порядка γ к каноническому виду, определите тип кривой и изобразите ее, если γ : $2x^2+3y^2+8x-6y+11=0$.

Вариант 10

Задание 1. Решите матричное уравнение

$$\left(\begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 3 & -3 \\ 1 & 1 \end{pmatrix} + X^T \begin{pmatrix} 6 & 4 \\ 1 & 1 \end{pmatrix} \right)^T = \begin{pmatrix} 9 & 1 \\ 2 & 1 \end{pmatrix}$$

Задание 2. Вычислите определитель

$$\begin{vmatrix}
2 & 1 & 0 & -1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{vmatrix}$$

Задание 3. Решите систему уравнений методом Гаусса

$$\begin{cases} x_1 + 3x_2 + 3x_4 = 7 \\ 2x_1 - 3x_2 + 3x_3 - x_5 = 1 \\ 3x_1 + x_2 + x_3 + 3x_4 - 3x_5 = 4 \end{cases}$$

Задание 4. Найдите общее решение системы и фундаментальную систему решений.

$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 + 3x_5 = 0 \\ 2x_1 + x_2 - x_3 + 3x_4 - x_5 = 0 \\ 3x_1 - x_2 + x_4 + x_5 = 0 \\ x_4 + x_5 = 0 \end{cases}$$

Задание 5. 1) Докажите, что векторы a=(1,7,2), b=(3,-1,-5), c=(2,-4,-3) образуют базис пространства R^3 . 2) Найдите координаты вектора m=(-3,2,11) в этом базисе.

Задание 6. Найдите собственные значения и собственные векторы матрицы

$$A = \begin{pmatrix} -3 & 2 \\ 2 & 0 \end{pmatrix}$$

Задание 7. Выясните, при каких значениях параметра **а** квадратичная форма $L(x_1,x_2) = 3x_1^2 + 4ax_2^2 - 4ax_1x_2$

является положительно определённой.

Задание 8. Найдите комплексное число $z = \frac{\overline{(-5+i)}}{(-1-4i)(2+3i)}$

Задание 9. Представьте число z=1-i в тригонометрической форме и вычислите z^7 .

Задание 10. Приведите уравнение линии второго порядка γ к каноническому виду, определите тип кривой и изобразите ее, если γ : $3x^2-y^2-2x-6y=42$.

Образец титульного листа расчётно-аналитической работы

Федеральное государственное образовательное бюджетное учреждение высшего образования

«Финансовый университет при Правительстве Российской Федерации» (Финуниверситет)

Калужский филиал Финуниверситета

Факультет экономики и бизнес-технологий Кафедра «Бизнес-информатика и высшая математика»

КОНТРОЛЬНАЯ РАБОТА по дисциплине ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Но	мер варианта
	Выполнил (а) студент (ка) 2 курса
	группы
	очной формы обучения
	(Ф.И.О. студента)
	Проверил преподаватель:
	(ученая степень, должность, Ф.И.О.)
Дата поступления работы на кафедру	7: Оценка: (зачтено/не зачтено) подпись преподавателя
2024 г.	2024 г.