Федеральное государственное образовательное бюджетное учреждение высшего образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Новороссийский филиал Кафедра «Информатики, математики и общегуманитарные науки»

Н.В. Королёва Методические рекомендации Математика

Направление подготовки: 38.03.02 «Менеджмент»

Направленность (профиль): Корпоративное управление

Программа подготовки: академическая Форма обучения: очная, заочная, очно-заочная Квалификация (степень) выпускника: бакалавр

1.1. Матрицы и определители. Основные понятия.

Определение 1.*Матрицей* размерности **m**х**n** называется прямоугольная таблица из элементов любой природы, имеющая **m** строк и **n** столбцов

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ 0 & 0 & 0 & 0 \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = A_{m \times n}$$

 a_{ij} – это элементы матрицы A, где i – номер строки, в которой находится элемент j – номер столбца.

Определение 2. Строка матрицы называется нулевой, если все её элементы равны нулю.

Определение 3. Если хотя бы один из элементов строки матрицы не равен нулю, то строка называется ненулевой.

Пример 1.

Первая и третья строки ненулевые, вторая нулевая.

Определение 4. Нулевой столбец - это столбец, где все элементы равны нулю.

Определение 5. Ненулевой столбец – это столбец, где хотя бы один из элементов не равен нулю

Определение 6. Диагональ матрицы, проведённая из левого верхнего угла в правый нижний угол, называется главной.

Определение 7. Диагональ, проведённая из левого нижнего угла в правый верхний угол, называется побочной.

Определение 8. Если у матрицы количество строк равно количеству столбцов, то такая матрица называется квадратной и обозначается $A \atop n\square n$

Определение 9. Если все элементы матрицы равны нулю, то она называется нулевой. **Определение 10**. Если матрица состоит из одной строки, то она называется векторстрокой.

Пример 2.
$$A = (2 6 0)$$

Определение 11. Если матрица состоит из одного столбца, то она называется векторстолбцом.

Определение 12. Если у квадратной матрицы элементы стоящие на главной диагонали не равны нулю, а все остальные элементы равны нулю, то матрица называется диагональной.

Пример 3. Диагональная матрица.

$$\begin{array}{cccc}
3 & 0 & 0 \\
A = (0 & 1 & 0) \\
0 & 0 & -6
\end{array}$$

Определение 13. Если у диагональной матрицы, по главной деагонали стоят единицы, то она называется единичной.

Единичную матрицу обычно обозначают символом Е.

Пример 4.

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Определение 14. Если у матрицы все элементы, расположенные ниже главной диагонали равны нулю, то такая матрица называется треугольной. **Пример 5.**

$$A = \begin{pmatrix} 2 & -1 & 8 & 1 & 0 & 0 \\ A = \begin{pmatrix} 0 & 4 & 9 \end{pmatrix}, B = \begin{pmatrix} 6 & 3 & 0 \end{pmatrix}$$
$$0 & 0 & 1 & 7 & 1 & -1$$

1.2. Действия над матрицами

Определение 15. Произведением матрицы A начислоkназывается матрица B = $k \cdot$ A того же размера, полученная изисходной умножением на заданное число всех ее элементов: $b_{ij} = k \cdot a_{ij}$

Пример 6.Умножим число 3 на матрицу.

Свойства умножения матрицы на число.

- $1 \cdot A = A$
- $0 \cdot A = \Theta$, где Θ нулевая матрица
- $k \cdot (A + B) = k \cdot A + k \cdot B$
- $(k+n) \cdot A = k \cdot A + n \cdot A$
- $(k \cdot n) \cdot A = k \cdot (n \cdot A)$

Определение 16. Суммой двух матриц A и B одинакового размера $m \square n$ называется матрица C=A+B, элементы которой $c_{ij} = a_{ij} + b_{ij}$ для i=1,2,3...,m; j=1,2,...n (матрицы складываются поэлементно)

Определение 17. Аналогично сложению, при вычитании матриц одного размера, матрицы вычитаются поэлементно, т.е. $c_{ij} = a_{ij} - b_{ij}$ **Пример 8.**

$$\Box 12 \quad -1 \Box \qquad \Box -4 \quad -3 \Box$$

Сложить матрицы $F = \Box\Box - 50$ $\Box\Box\Box$ и $G = \Box\Box\Box$ 15 7 $\Box\Box\Box$

П

Решение.

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы:

$$\Box 12 -1 \Box \Box -4 -3 \Box \Box 12 + (-4) -1 + (-3) \Box \Box 8 -4 \Box$$

$$F + G = \Box\Box = 50 \ \Box\Box\Box + \Box\Box\Box\Box \ 15$$
 $7 \ \Box\Box\Box = \Box\Box\Box\Box -5 + 150 + 7\Box\Box\Box = \Box\Box\Box\Box\Box$ $7 \ \Box\Box\Box$

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов.

Пример 9.

Найти разность матрицА =
$$\begin{pmatrix} 3 & 5 & 1 & \text{и C} = \begin{pmatrix} -2 & 1 & 2 \\ 0 & & & 4 & \end{pmatrix} \\ -2 & & 3 & & 3 \end{pmatrix}$$

Решение.

Определение 18. Пусть матрица A имеет размер $m\square k$, а матрица B размера $k\square n$. То есть число столбцов матрицы A равно числу строк матрицы B. Тогда произведение матриц $A_{m\square k} \square B_{k\square n}$ называется такая матрица $C_{m\square n}$, каждый элемент которой c_{ij} равен сумме произведений элементов i — й строки матрицы A на соответствующие элементы j — го столбца матрицы B.

$$k \ c_{ij} = \square a_{is}b_{sj}, i = 1,2,...,m; j$$

=1,2,...,n.

Свойства умножения матриц.

(

- $(A\square B)\square C = A\square (B\square C)$, (свойство ассоциативности)
- $k \square (A \square B) = (k \square A) \square B$, где k- число.
- A(B + C) = AB + AC (свойство дистрибутивности)
- $E \square A = A \square E$ умножение на единичную матрицу.
- $AB\Box BA$ произведение матриц не коммутативно

Пример 10. Найти матрицу C равную произведению матриц
$$A = (4 \ 2)$$
, $B = 9 \ 0$

$$-3$$
 4

Решение.

Пример 11. Найти произведение матрицы $P = (6 \quad 9 \quad -5)$ на матрицу $R = 4 \quad 7 \quad -3$

Решение.

$$\Box$$
5 8 - 4 \Box \Box \Box \Box

$$\Box 6 \quad 9 - 5 \Box \Box \Box - 3 \Box = (5\Box 2 + 8\Box (-3) + (-4)\Box 16\Box 2 + 9\Box (-3) + (-5)\Box 14\Box 2 + 7\Box (-3) + (-3)\Box 1)$$

$$\Box\Box 47 - 3\Box\Box \Box\Box 1\Box\Box$$

$$= (-18 - 20 - 16)$$

Определение 19. Транспонирование матрицы – переход от матрицы A к матрице A, в которой строки и столбцы поменялись местами с сохранением порядка. Обозначается A^T или A.

Свойства транспонированной матрицы

- Если матрица A имеет размер $n \times m$, то транспонированная матрица A^T имеет размер $m \times n$;
- $(A^T)^T = A;$
- $(\mathbf{k} \cdot \mathbf{A})^{\mathrm{T}} = \mathbf{k} \cdot \mathbf{A}^{\mathrm{T}};$
- $\bullet \quad (A+B)^T = A^T + B^T;$
- $\bullet \quad (\mathbf{A} \cdot \mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \cdot \mathbf{A}^{\mathrm{T}}.$

$$-1$$
 0 -2 **Пример 12.** Транспонировать матрицуВ = $(-5$ 4 $-7)$ 6 -4 -6

Решение.

Сначала переписываем первую строку в первый столбец:

$$\begin{array}{c}
-1 \\
B = (0 \\
-2
\end{array}$$

Потом переписываем вторую строку во второй столбец и третью в третий столбец:

$$\begin{array}{rrrr}
-1 & -5 & 6 \\
B = (0 & 4 & -4) \\
-2 & -7 & -6
\end{array}$$

Элементарные преобразования матрицы.

Определение 20. Элементарные преобразования матрицы — это такие преобразования матрицы, в результате которых сохраняется эквивалентность матриц, то есть, элементарные преобразования не изменяют множество решений системы линейных

алгебраических уравнений, которую представляет эта матрица. Элементарными преобразованиями строк называют:

- перестановку местами любых двух строк матрицы;
- умножение на ненулевую константу любой строки матрицы;
- прибавление к любой строке матрицы другой строки, умноженной на ненулевое число.

Тоже верно и для столбцов.

Определение 21. Если матрица В получена из А с помощью элементарных преобразований, то Аи В называются эквивалентными. **Пример 13.**

Используя элементарные преобразования строк преобразовать матрицу А в треугольную.

$$\begin{array}{cccc}
 & 4 & 2 & 0 \\
 A = (1 & 3 & 2) \\
 & -1 & 3 & 10
 \end{array}$$

Решение.

Поменяем первую и вторую строки местами

Ко второй строке прибавим первую, умноженную на -4, к третей строке прибавим первую:

Вторую строку делим на -2, третью строку делим на 6; затем меняем вторую и третью строки местами. И далее к третьей прибавим вторую, умноженную на -5:

1.3. Определитель матрицы

Определитель квадратной матрицы (детерминант) – число, характеризующее квадратную матрицу и используемое при решении систем уравнений. Определитель матрицы A обычно обозначается $\det(A)$, |A|, или Δ .

Определение 22. Определителем матрицы первого порядка называется элемент a_{11} : $\Box = A = a_{11}$

Определение 23. Определителем матрицы второго порядка называется число, вычисленное по формуле:

 $\Delta = |aa_{1121}aa_{1222}| = a_{11}a_{22} - a_{12}a_{21}.$

Пример 14.

Найти определитель матрицы А.

Решение.

$$\Delta = \begin{vmatrix} 5 & 7 \\ -4 & 1 \end{vmatrix} = 5 * 1 - 7 * (-4) = 33$$

Определение 24. Пусть дана матрица третьего порядка
$$\begin{vmatrix} \Box a_{11} & a_{12} & a_{13} \Box \\ \Box & a_{22} & a_{23} \Box \\ \Box a_{31} & \Box \end{vmatrix}$$

$$\begin{vmatrix} a_{23} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{32}a_{23}a_{11} \\ a_{31} & a_{32} \end{vmatrix}$$

Определителем матрицы третьего порядка называется число, вычисленное по формуле: a_{12} a_{13}

Определение 25. Минором любого элемента матрицы n-го порядка называется определитель n-l порядка, полученный из данного вычеркиванием строки и столбца, на пересечении которых стоит элемент. Обозначается M_{ij} , где i – номер строки, j – номер столбца.

Например,
$$M_{23}$$
 $\begin{vmatrix} a_{11} \\ a_{12}a_{11} \\ a_{12}a_{22} \\ a_{23} \\ a_{33} \\ a_{34}a_{32}a_{21}a_{22}a_{32}a_{33} \end{vmatrix}$ $= \mathcal{M}_{33} = \mathcal{M}_{11} = \mathcal{M}_{33}$

Определение 26. Алгебраическое дополнение элемента a_{ij} матрицы называют минор этого же элемента, взятый со знаком $(-1)^{i+j}$, где i,j —номера соответственно строки и столбца, на пересечение которых находится элемент. Обозначается A_{ij} .

Пример 15.

$$\begin{vmatrix} 3 & 1 & 2 \\ \Box = 6 & 7 \end{vmatrix}$$
4, тогда миноры: $M_{23} = \begin{vmatrix} 3 & 1 \\ 24 \\ 5 & 8 \end{vmatrix}$ — $5 = 19$, $M_{13} = = 48 - \begin{vmatrix} 6 & 7 \\ 35 \\ 5 & 8 \end{vmatrix}$ 13. 5 8 9 гебраические дополнения:

Алгебраические дополнения:
$$\begin{vmatrix} 3 & 1 \\ 3 & 1 \end{vmatrix}$$

$$A_{23} = (-1) = -(24 - 5) = -19, \qquad A_{13} = (1) = (48 - 35) = \begin{vmatrix} 13 & 1 \\ 13 & 1 \end{vmatrix}$$

Определение 27. Определителем квадратной матрицы порядка п,

 $\square a_{11} a_{12} \dots a_{1n} \square$

 $A = \square \square a \dots 21 a \dots 22 \dots a \dots 2n \square \square$

 $\square \square a_{n1} a_{n2} \dots a_{nn} \square \square$

n

называется число $\square = \square a_{ik} A_{ik}$, где a_{ij} — элементы строки определителя

(разложение по строке, аналогично по столбцу), A_{ik} —алгебраическое дополнение элемента a_{ij} .

$$\begin{vmatrix} a_{11} & a_{13} & a_{12} \\ a_{23} & a_{33} \end{vmatrix}$$
, тогда $\begin{vmatrix} a_{21} & a_{22} \\ a_{31} a_{32} & a_{33} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{31} a_{32} & a_{33} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{31} a_{33} & a_{33} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{31} a_{33} & a_{33} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{22} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{22} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{22} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{22} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{22} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{22} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{vmatrix}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{23}$

Пример16. Найти определитель:

1 0 13
$$\Box = 2 \ 1 + 1 \Box (-1) + 0 \Box (-1) =$$

$$7 \ 457 - 452 \ 21$$

Свойства определителя матрицы

 \square Определитель единичной матрицы равен единице: |E| = 1

- □ Если у матрицы есть две одинаковые строки (столбца), то её определитель равен нулю
- □ Если у матрицы есть две пропорциональные строки (столбца), то определитель равен нулю.
- □ Если у матрицы есть нулевая строка (столбец), то её определитель равен нулю.
- □ Если у матрицы имеются две (или несколько) линейно зависимых строк (столбцов), то определитель равен нулю.
- \square При транспонировании значения определителя не меняется $A \stackrel{|}{=} A_T$
- □ Если к какой-то строке определителя прибавить другую строку, умноженную на какоелибо число, то определитель матрицы не изменится. То же верно для столбцов.
- □ Определитель матрицы не изменится, если к какой-либо его строке (столбцу) прибавить линейную комбинацию других строк (столбцов).
- □ Если поменять местами две строки (столбца) матрицы, то определитель матрицы поменяет знак.
- □ Общий множитель в строке (столбце) можно выносить за знак определителя.
- □ Определитель треугольной матрицы равен произведению его элементов, расположенных на диагонали.
- □ Определитель произведения матриц равен произведению определителей этих матриц.
 Пример 17. Вычислить определитель 4-го порядка.

Решение

Определитель 4-го порядка находится по формуле: *n*

$$\Box = \Box a_{ik} A_{ik},$$

Где A_{ij} - это алгебраические дополнения и $A_{ij} = (-1)^{i+j} M_{ij}$, то есть формулу можно переписать так:

$$\Box = (-1)_{i+j} \Box a_{ij} \Box M_{ij} \Box$$

Запишем разложение по первой строке:

$$\begin{vmatrix} 5 & 6 & 18 \\ 2 \\ | 2 & -2 \\ 6 & 18 \end{vmatrix} \begin{vmatrix} 2 \\ | 2 & -2 \\ 6 & 18 \end{vmatrix} \begin{vmatrix} 2 \\ | 4 \end{vmatrix} \begin{vmatrix} 2 \\ | 2 & -2 \end{vmatrix} \begin{vmatrix} 2 \\ | 6 & 18 \end{vmatrix} \begin{vmatrix} 2 \\ | 4 \end{vmatrix} \begin{vmatrix} 2 \\ | 3 & 2333 \end{vmatrix} = \frac{a_{32} a_{33}}{a_{32} a_{32}} \begin{vmatrix} 2 \\ | 3 & 233 \end{vmatrix} \begin{vmatrix} 2 \\ | 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 \\ | 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 \\ | 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 & 3 \\ | 3 & 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 & 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 & 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 & 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 & 3 & 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 & 3 & 3 & 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 & 3 & 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 & 3 & 3 & 3 & 3 \end{vmatrix} \begin{vmatrix} 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$$

1.4. Обратная матрица

Определение 28. Матрица A^{-1} называется обратной по отношению к квадратной матрице A, если выполняется равенство: $A^{-1} \square A = A \square A^{-1} = E$.

Только квадратная матрица имеет обратную, причем последняя является квадратной того же порядка.

Если же определитель матрицы равен нулю, то такая матрица обратной не имеет.

Одним из способов нахождения обратной матрицы — с помощью присоединённой матрицы: справа от матрицы приписываем единичную матрицу и с помощью элементарных преобразований слева образуем единичную матрицу; справа же из единичной получаем матрицу, которая является обратной к исходной. То есть: (A|E)~

$$(E \mid A^{-1})$$

Пример 18.

Найти обратную матрицу матрицы А.

Решение.

Приписываем к матрице А справа матрицу третьего порядка:

Преобразуем левую часть полученной матрицы в единичную.

Для этого от третьей строки отнимем первую строку.

Третью строку поделим на (-3) и поменяем местами со второй строкой.

Отнимем от первой строки вторую умноженную на 4; от третьей строки вторую умноженную на 2:

Отнимем от первой строки третью строку:

$$\begin{pmatrix}
2 & 0 & 01/3 & 1 & 2/3 \\
0 & 1 & 01/3 & 0 & -1/3 \\
1 - 2/3 & 1 & 2/3
\end{pmatrix}$$

$$\square$$
 1/6 $-1/2$ 1/3 \square

$$^{-1} = \square \square 1/3 \qquad 0 \qquad -1/3\square \square.$$

A
$$\Box_{\Box - 2/3} \quad 1 \quad 2/3 \quad \Box_{\Box}$$

Определение 29. Если матрица A составлена из элементов, которые равны алгебраическим дополнениям соответствующих элементов матрицы A, то она называется союзной (присоединённой) матрицей.

Определение 30. Матрица \tilde{A} , элементы которой равны <u>алгебраическим</u> дополнениям соответствующих элементов матрицы A называется союзной (присоединённой) матрицей.

Второй способ нахождения обратной матрицы следующий:

- 1. Находим определитель исходной матрицы. Если он не равен нулю, то обратная матрица существует. Если же определитель равен нулю, то матрица вырожденная и обратная матрица не существует.
- 2. Находим алгебраические дополнения элементов матрицы и составляем из них \sim присоединённую матрицу A .
- 3. Находим матрицу, транспонированную к A .
- 4. Вычисляем обратную матрицу по формуле:

$$A_{-1} = \underbrace{1}_{A} A \sim T$$

5. Проверяем правильность вычисления обратной матрицы, с помощью соотношения

Пример 19. Найти обратную матрицу матрицы А.

Решение

$$\begin{vmatrix} 2 & 4 & 1 \\ \Box & = 0 \\ 0\Box 4\Box 1 - 1\Box 1\Box 2 = 6 \end{vmatrix}$$

$$2 \qquad 1 = 2\Box 2\Box 1 + 4\Box 1\Box 2 + 0\Box 1\Box 1 - 1\Box 2\Box 2 - 2$$

$$2 \qquad 1 \qquad 1$$

Найдем алгебраические дополнения матрицы А:

$$A_{11} = (-1) = 1 \ 1$$

$$A_{11} = (-1) = 1 \ 1$$

$$A_{12} = (-1) = -2$$

$$A_{13} = (-1)^{1+3} = 0 = -4;$$

$$A_{14} = (-1) = -2$$

$$A_{15} = (-1) = -4$$

```
Запишем союзную матрицу
     \Box 1 2 -4\Box
~ 🛮
                    A = \square - 3 \quad 0 \quad 6 \square
    \Box\Box 2 - 2 4 \Box\Box
        \square 1 2 -4\square^T \square 1 -3 2 \square \square 1/6 -1/2 1/3 \square
                            1 \square \square - 3 0 6 \square \square = 1 \square \square 20 -2 \square \square = \square \square 1/3
<sup>-1</sup>=
            -1/3□□
A
      \Box 1/6 -1/2 1/3 \Box -1 =
  \Box\Box 1/30 - 1/3\Box\Box
Α
     \square 1/6 -1/2 1/3 \square \square2 4 1\square
                                        Проверка: A-1A=\Box 1/3 0 -1/3\Box 0 2 1\Box
                 \Box\Box - 2/3 1 2/3 \Box\Box \Box\Box 2 1 1 \Box\Box
\Box 1 \ \Box 2 + (-1) \ \Box 0 + 1 \ \Box 2 1 \ \Box 4 + (-1) \ \Box 2 + 1 \ \Box 11 \ \Box 1 + (-1) \ \Box 1 + 1 \ \Box 1 \Box \Box
  \square \ 6 \overline{2} \overline{3} \overline{6} \overline{2} \overline{3} \overline{6} \overline{2} \overline{3} \square \ \square 1 \ 0 \ 0\square
= \Box\Box\Box(13-\Box22)+(-312)\Box2(-213)\Box4+(-31)\Box113\Box1+(-31)\Box1\Box\Box=\Box\Box\Box00
                                                                                        10
```

 $10\Box\Box\Box\Box$.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ № 1 ВАРИАНТ 1

Найти матрицу $C = B \square A$ и выяснить, являются ли строки матрицы C линейно зависимыми.

2. Методом обратной матрицы решить систему уравнений:

$$\Box 2x_1 + x_2 - x_3 = 4,
\Box x_3 = 3, 0.
\Box x_1 + x_2 + 2x_3 =
\Box 2x_1 - x_2 -
\Box$$

3. Методом Гаусса решить систему уравнений:

Найти одно из ее базисных решений.

4. Найти с помощью преобразования строк обратную матрицу к матрице

воспользовавшись схемой $(A/E) \rightarrow (E/A_{-1})$

5. Методом обратной матрицы и по формулам Крамера решить систему уравнений

1. Даны матрицы:

Найти матрицу $C = A \square B \square + 2E$ и выяснить, имеет ли она обратную.

2. Методом Гаусса решить систему уравнений:

$$\Box x_1 + 2x_2 - 2x_3 = 1,$$
 $\Box x_1 + 3x_2 - 3x_3 = 1,$
 $\Box x_1 + 3x_2 - 3x_3 = 1,$
 $\Box x_1 + x_2 - 2x_3 = 1.$

3. Выяснить, является ли совместной система уравнений:

4. Найти с помощью преобразования строк обратную матрицу к матрице

 $\square \square 2 \ 0 \ 3 \square \square$ воспользовавшись схемой (A/

$$E) \rightarrow (E/A_{-1})$$

5. Методом обратной мат $+16x_2 + 2x_3 = 4$ \square $\square 3x_1 - 2x_2 + 6x_3 = -7$	грицы и по	формула	им Краме	ра решити	ь систему уравнений □10 <i>x</i> ₁
$\Box_{\Box} 2x_1 + x_2 - x_3 = -5$					
		ВАРИ	IAHT 3		
1. Решить матричное уравнение					
		BX + 2	$2X = B\square,$		
где		_	1 00		
		Ш	-1 2□		
$B = \Box\Box \ 12\Box\Box\Box$.					
		_			
□2. По формулам Крамера решить систему уравнений:					
2. 110 формулам крамера	•	$-3x_2$			
			$2x_3$		
	_	+ x ₂			
	\Box_{3x_1}	$-2x_2$	+		
3. Методом Гаусса решить систему уравнений:					
	$\Box 5x_1$ +	$7x_2 +$	4 <i>x</i> ₃ +	$3x_4 =$	0,
			+	$2x_4 =$	0,
	\Box_{3x_1} +	4 <i>x</i> ₂ +	$3x_3 +$	$3x_4$	
			+	1r.	0,

$$\Box 5x_1 + 7x_2 + 4x_3 + 3x_4 = 0,
\Box 3x_1 + 4x_2 + 3x_3 + 3x_4 = 0,
\Box 4x + 4x_2 + 3x_3 + 3x_4 = 0,
\Box + 4x_4 = 0,
\Box - 4x = 0.$$

$$\Box - 1 + 5x_2 + 5x_3$$

$$\Box \Box 5x_1 + 6x_2 + 7x_3$$

4. Найти с помощью преобразования строк обратную матрицу к матрице

 $\Box 1\ 3\ 0\Box$

 $\Box 3\ 1\ 0\Box$

 $\Box\Box0\ 0\ 9\Box\Box$

воспользовавшись схемой (A/

$$E) \rightarrow (E/A^{-1})$$

5. Методом обратной матрицы и по формулам Крамера решить систему уравнений

$$\Box 7x + 2y + 3z = 15$$

 $\Box 5x - 3y + 2z = 15$
 $\Box \Box 10x - 11y + 5z = 36$

1. Даны матрицы:

Найти матрицу $C = A \square B \square$ и определить ее ранг.

2. Методом обратной матрицы решить систему уравнений:

3. Методом Гаусса решить систему уравнений:

$$\Box 2x_{1} - x_{2} + x_{3} = 4,$$

$$\Box x_{1} + 2x_{2} - 3x_{3} = 5,$$

$$\Box x_{3} = 2,$$

$$\Box x_{3} = 2,$$

$$A x_{3} = 0.$$

$$\Box x_{1} + x_{2} - \Box x_{1} - x_{2} + \dots$$

4. Найти с помощью преобразования строк обратную матрицу к матрице

□0 3 1□

 $\Box\Box 0$ 0 3 $\Box\Box$ воспользовавшись схемой (A/

$$E) \rightarrow (E/A_{-1})$$

5. Методом обратной матрицы и по формулам Крамера решить систему уравнений

$$3x + 2y + z = 5$$

$$2x - y + z = 6$$

$$x + 5y = -3$$

1.Решить матричное уравнение

$$A \square X \square B = C$$
,

где

 $\Box - x_1 - 2x_2 + x_3$ = 10. $\Box x_1 + 3x_2 - 3x_3$

3. Методом Гаусса решить систему уравнений:

$$\Box 5x_1 + 6x_2 + 11x_3 + 4x_4 = 0,$$
 $\Box 3x_1 + 5x_2 + 8x_3 + 0$
 $\Box x_1 + 2x_2 + 3x_3$
 $= 0$
. обратную матрицу к матрице

 $\Box 1 \ 1 \ 0 \Box$

 $\Box 1 \ 1 \ 0 \Box$

 $\Box\Box 0$ 0 1 $\Box\Box$ воспользовавшись схемой (A/

$$E) \rightarrow (E/A_{-1})$$

5. Методом обратной матрицы и по формулам Крамера решить систему уравнений

$$\Box 14x + 4y + 6z = 30$$

$$5x - 3y + 2z = 15$$

$$\Box 10x - 11y + 5z = 36$$

1.Даны матрицы:

Найти матрицу $C = B \square A \square$ и выяснить, имеет ли она обратную.

2. Методом Гаусса решить систему уравнений:

$$\Box x_1 - x_2 + 2x_3 = 8,$$
 \Box
 $\Box 2x_1 - x_2 - x_3 = 5,$
 $\Box 3x_1 + 2x_2 - x_3 = 5.$

3. Выяснить, является ли совместной система уравнений:

$$\Box x_1 + 2x_2 + 4x_3 + x_5 = 1,$$

$$\Box 2x_1 + 5x_2 + 11x_3 + 5x_5 = 2,$$

$$\Box - 4x_2 - 10x_3 - 9x_5 = -1,$$

$$\Box - x_1 + 3x_4 + x_4$$

4. Найти с помощью преобразования строк обратную матрицу к матрице

 $\Box 2 4 0 \Box$

 $\Box 0\ 1\ 0\Box$

 $\square \square 2$ 3 $2 \square \square$ воспользовавшись схемой (A/

$$E) \rightarrow (E/A_{-1})$$

5. Методом обратной матрицы и по формулам Крамера решить систему уравнений

$$\Box - 6x_1 + 4x_2 - 12x_3 = 14$$

$$\Box$$
 $2x_1 + x_2 - x_3 = -5$

1. Решить матричное уравнение

$$A \square X = B$$
,

где

2. По формулам Крамера решить систему уравнений:

$$\Box x_1 - 4x_2 + 2x_3 = 1,
\Box - 2x_1 + x_2 - 3x_3 =
\Box 3x_1 - 2x_2 + x_3 =$$

3. Методом Гаусса решить систему уравнений:

4. Найти с помощью преобразования строк обратную матрицу к матрице

 $\Box 130\Box$

 $\Box 3 \ 1 \ 0 \Box$

 $\Box\Box 0$ 0 9 $\Box\Box$ воспользовавшись схемой (A/

$$E) \rightarrow (E/A_{-1})$$

5. Методом обратной матрицы и по формулам Крамера решить систему уравнений

$$\Box 2x_1 - 3x_2 + x_3 = -7$$

$$\Box x_1 + 4x_2 + 2x_3 = -1$$

$$\Box$$
 $x_1 - 4x_2 = -5$

1.Даны матрицы:

Найти матрицу $C = A \square B$ и определить ее ранг.

2. Методом обратной матрицы решить систему уравнений:

$$\Box 5x_1 + 4x_2 - x_3 = -2,
\Box x_3 = 2, -12.
\Box x_2 + 5x_3 =$$

$$\Box x_1 - 2x_2 -$$

3. Методом Гаусса решить систему уравнений:

Найти одно из ее базисных решений.

4. Найти с помощью преобразования строк обратную матрицу к матрице

$$\Box 031\Box$$

 $\square\square 0$ 0 3 $\square\square$ воспользовавшись схемой (A/

$$E) \rightarrow (E/A_{-1})$$

5. Методом обратной матрицы и по формулам Крамера решить систему уравнений $\Box 10x_1 + 16x_2 + 2x_3 = 4$

$$\Box 9x_1 - 6x_2 + 18x_3 = -21$$

$$\Box_{\Box} 2x_1 + x_2 - x_3 = -5$$

1. Решить матричное уравнение

$$X \square A = B$$
,

где

2. По формулам Крамера решить систему уравнений:

$$\Box x_{1} - 2x_{2} - x_{3} = 7,
\Box x_{1} + x_{2} + x_{3} = -2.
\Box -x_{1} - 3x_{2} + x_{3} = \Box$$

3. Методом Гаусса решить систему уравнений:

$$\Box 5x_1 + 6x_2 + 17x_3 - x_4 = 0,$$

$$\Box 3x_1 + 5x_2 + 13x_3 - 2x_4 = 0,$$

$$\Box x_1 + 2x_2 + 5x_3 - x_4 = 0.$$

4. Найти с помощью преобразования строк обратную матрицу к матрице

 $\Box 130\Box$

 $\Box 3\ 1\ 0\Box$

 $\Box\Box 0$ 0 9 $\Box\Box$ воспользовавшись схемой (A/

$$E) \rightarrow (E/A_{-1})$$

5. Методом обратной матрицы и по формулам Крамера решить систему уравнений

$$\square x_1 + x_2 - 2x_3 = 6$$

П

$$\Box 2x_1 + 3x_2 - 7x_3 = 16$$

$$\Box$$
 $5x_1 + 2x_2 + x_3 = 16$

ВАРИАНТ 10

1. При каких значениях \square ранг матрицы

равен двум?

2. Методом обратной матрицы решить систему уравнений:

$$\Box 2x_1 + x_2 + x_3 = 1,
\Box x_1 - x_2 - 3x_3 = 5,
\Box 2x_1 + 2x_2 +$$

3. Методом Гаусса решить систему уравнений:

$$\Box 2x_{1} - 3x_{2} - 9x_{4} = -7,$$

$$x_{3} \Box 3x_{1} + 2x_{2} - 7x_{4} = -17,$$

$$- 8x_{3} - x_{4}$$

$$- 5x_{4} = -7,$$

$$\Box - 7x_{4} = -7,$$

$$\Box - 7x_{4}$$

Найти одно из ее базисных решений.

4. Найти с помощью преобразования строк обратную матрицу к матрице

 $\Box\Box$ 3 1 3 $\Box\Box$ воспользовавшись схемой (A/

$$E) \rightarrow (E/A_{-1})$$

5. Методом обратной матрицы и по формулам Крамера решить систему уравнений

$$\square \ 2x_1 + x_2 = 5$$

$$\Box x_1 + 3x_3 = 16$$

$$\Box_{\Box 5x_2 - x_3 = 10}$$