11 класс. Вариант 1

Задание 1. Пачка офисной бумаги в интернет-магазине стоит 630 руб., а при оплате за 15 пачек или более предусмотрен кешбэк в размере 10% от внесённой суммы. Как, имея изначально 20000руб., приобрести максимально возможное количество таких пачек? Определите это количество.

Решение. Любая пачка обойдётся покупателю не меньше, чем в

 $(1-0,1)\cdot 630=567$ руб., а поскольку $20000<36\cdot 567$, то купить удастся не более 35 пачек.

С другой стороны, 35 пачек приобрести можно. Внеся сначала 15.630 руб. за 15 пачек, после получения кешбэка покупатель будет иметь 20000-15.630+15.63=11495 руб. Это позволит ему внести 18.630=11340 руб. за 18 пачек. Новый кешбэк составит 1134 руб., и у покупателя окажется 11495-11340+1134=1289 руб. — сумма, достаточная для покупки ещё двух пачек бумаги.

Ответ: 35.

Содержание критерия	Оценка	Баллы
Задача полностью решена	++	10
Показан оптимальный вариант покупки, но обоснование	+-	6
оптимальности не приведено		
Верно указано ограничение сверху, но достижимость	-+	3
максимального значения не доказана		

Задание 2. Найдите область определения функции
$$y = \sqrt{\frac{x^2-4}{\lg(x^2-1)}}$$
.

Решение. Искомая область – объединение множеств решений систем

$$\begin{cases} x^2 - 1 > 0 \\ x^2 - 4 \ge 0 \end{cases} \quad \text{и} \quad \begin{cases} x^2 - 1 > 0 \\ x^2 - 4 \le 0 \\ \lg(x^2 - 1) > 0 \end{cases}$$

Первая система равносильна неравенству $x^2 \ge 4$ и имеет решение $(-\infty; -2] \cup [2; +\infty)$, вторая сводится к неравенствам $1 < x^2 < 2$, имеющим своим решением $\left(-\sqrt{2}\; ; \; -1\right) \cup (1; \; \sqrt{2})$.

Ответ: $(-\infty; -2] \cup (-\sqrt{2}; -1) \cup (1; \sqrt{2}) \cup [2; +\infty).$

Содержание критерия	Оценка	Баллы
Задача полностью решена	++	10

Выписаны все необходимые соотношения, но решение не	-+-	3
найдено		

Задание 3. Найдите все квадратные трёхчлены, максимальные значения каждого из которых на отрезках [0; 1], [1; 2] и [2; 3] равны 3, 6 и 8 соответственно.

Решение. Пусть трёхчлен $f(x) = ax^2 + bx + c$ удовлетворяет условиям задачи, а выполнены равенства $f(x_1) = 3$, $f(x_2) = 6$, $f(x_3) = 8$, где x_1 , x_2 и x_3 – числа, принадлежащие отрезкам [0; 1], [1; 2] и [2; 3] соответственно. В силу тождества f(x-1) - 2f(x) + f(x+1) = 2a и очевидных неравенств $f(x_2-1) \le 3$, $f(x_2+1) \le 8$ тогда $a = \frac{1}{2} \left(f(x_2-1) - 2f(x_2) + f(x_2+1) \right) \le \frac{1}{2} (3-2\cdot 6+8) = -\frac{1}{2} < 0$. Следовательно, ветви параболы y = f(x) направлены вниз.

Неравенства $f(x_1) < f(x_2) < f(x_3)$ показывают, что f(x) возрастает при $x \le 2$, а потому $x_1 = 1$, $x_2 = 2$, откуда a + b + c = 3, 4a + 2b + c = 6, b = 3 - 3a, c = 2a и $f(x) = ax^2 + (3 - 3a)x + 2a$.

При $a=-\frac{1}{2}$ имеем трёхчлен $f_0(x)=-\frac{1}{2}x^2+\frac{9}{2}x-1$, максимальное значение которого на отрезке [2;3] равно 8. Если же $f(x)=ax^2+(3-3a)x+2a$, где $a<-\frac{1}{2}$, то $f(x)=f_0(x)+(a+\frac{1}{2})(x-1)(x-2)< f_0(x)$ при любом x>2. Это значит, что $f_0(x)$ — единственный трёхчлен, удовлетворяющий всем нужным требованиям.

Ответ: $-\frac{1}{2}x^2 + \frac{9}{2}x - 1$.

Содержание критерия	Оценка	Баллы
Задача полностью решена	++	12
Найден требуемый многочлен, но обоснование того, что он	+-	6
единствен, содержит пробелы		
Найден требуемый многочлен, но обоснование того, что он	-+	4
единствен, содержит существенные пробелы		
Найден требуемый многочлен, но обоснование	_ *	1
единственности отсутствует		

Задание 4. Все вершины тетраэдра ABCD равноудалены от точки O. Зная, что AB = CD = a, BC = AD = b, AC = BD = c, найдите радиус сферы, проходящей через O и через середины рёбер AB, BC и AC.

Решение. Достроим тетраэдр ABCD до параллелепипеда AKBLNDMC (AN//KD//BM//LC), проведя через его противоположные рёбра пары параллельных плоскостей. Ввиду равенств KL=CD=AB, KM=AC=BD и KN=BC=AD все грани этого параллелепипеда будут прямоугольниками, а сам параллелепипед – прямоугольным; точка O окажется его центром, а середины рёбер AB, BC и AC — центрами граней AKBL, BLCM и ALCN соответственно. Все эти центры принадлежат сфере, построенной на отрезке OL как на диаметре. Следовательно, искомый радиус равен $r=\frac{1}{2}OL=\frac{1}{4}LD=\frac{1}{4}\sqrt{LA^2+LB^2+LC^2}$, учитывая, что $LA^2+LB^2=a^2$, $LB^2+LC^2=b^2$, $LA^2+LC^2=c^2$, получаем $r=\frac{1}{8}\sqrt{2(a^2+b^2+c^2)}$.

Ответ:
$$\frac{1}{8}\sqrt{2(a^2+b^2+c^2)}$$
.

Содержание критерия			Оценка	Баллы				
Задача	полностью	решена:	получен	верный	ответ	И	++	12
приведе	ено полное об	босновани	ie					

Задание 5. Решите уравнение $3^{-\frac{1}{2}} + 6^{-\frac{1}{2} + \log_6 \sin x} = 2^{-\frac{1}{2} + \log_2 \cos x}$.

Решение. ОДЗ неизвестного определяется системой неравенств $\sin x > 0$, $\cos x > 0$. Уравнение $\frac{1}{\sqrt{3}} + \frac{\sin x}{\sqrt{6}} = \frac{\cos x}{\sqrt{2}}$, являющееся следствием исходного, преобразуется к уравнению $\cos(x + \frac{\pi}{6}) = \frac{\sqrt{2}}{2}$. Корни последнего описываются формулой $x = -\frac{\pi}{6} \pm \frac{\pi}{4} + 2\pi n$, где $n = 0, \pm 1, \pm 2, \dots$. Проверка оставляет только числа вида $-\frac{\pi}{6} + \frac{\pi}{4} + 2\pi n = \frac{\pi}{12} + 2\pi n$.

Ответ: $\frac{\pi}{12} + 2\pi n$, где $n = 0, \pm 1, \pm 2, \dots$

Содержание критерия	Оценка	Баллы
Задача полностью решена: получен верный ответ и	++	12
приведено полное обоснование		
Ответ содержит все верные решения и посторонние корни,	-+	3
ОДЗ указана		
ОДЗ не найдена, ответ содержит посторонние корни	_ *	1

Задание 6. Дан выпуклый четырёхугольник *ABCD*, в котором $\angle BAC = \angle CAD$ и *AB>AD*. Прямая, делящая его внешний угол при вершине *A* пополам,

пересекает прямые BC, CD и BD в точках P, Q и R соответственно. Найдите длину отрезка AP, если AQ=3, AR=18.

Решение. Заметим, что лучи AP и AC являются биссектрисами двух смежных углов. Поэтому $AP \bot AC$ и $BB' /\!/\! AC /\!/ DD'$, где B' и D' — проекции точек B и D на прямую AP.

Пусть b, c, d и p — длины отрезков AB', AC, AD' и AP соответственно, $k = ctg \angle BAC = ctg \angle CAD$. Тогда $\frac{p-b}{p} = \frac{kb}{c}$ (в силу подобия треугольников PB'B и PAC) и $\frac{3-d}{3} = \frac{kd}{c}$ (в силу подобия треугольников QD'D и QAC); из этих равенств следует , что $\frac{1}{p} = \frac{1}{3} + \frac{1}{b} - \frac{1}{d}$.

Условие AB > AD означает, что BB' > DD', а потому точки B и R лежат в разных полуплоскостях относительно прямой AC. В силу подобия треугольников RB'B и RD'D имеем $\frac{18+b}{18-d} = \frac{kb}{kd}$, откуда $\frac{1}{b} - \frac{1}{d} = -\frac{1}{9}$; следовательно $\frac{1}{p} = \frac{1}{3} - \frac{1}{9}$, $p = \frac{9}{2}$.

Ответ: $\frac{9}{2}$.

Содержание критерия	Оценка	Баллы
Задача полностью решена: получен верный ответ и	++	14
приведено полное обоснование		
Выписаны все необходимые соотношения, но верный	-+	6
ответ не получен/ Приведен верный ответ, но обоснование		
содержит пробелы		

Задание 7. Неизвестный 100-значный код составлен из цифр 1 и 2. За один шаг про любое натуральное число можно узнать, является ли оно фрагментом кода. (Фрагмент числа N — это любое число, образованное подряд идущими цифрами в записи N; например, N=1211 имеет ровно восемь фрагментов: 1, 2, 12, 21, 11, 121, 211 и 1211). Докажите, что за 120 шагов можно узнать этот код.

Решение. Приведём план определения кода, предусматривающий не более 114 шагов. Этот план состоит из четырёх этапов.

Первый этап — определение максимального фрагмента, состоящего из одних единиц. Это делается методом двоичного поиска. (Сначала узнаём, является ли фрагментом кода число $\underbrace{1\dots 1}$. Если да, то ставим вопрос о числе

 $\underbrace{1 \dots 1}_{75}$, а если нет, то о числе $\underbrace{1 \dots 1}_{25}$. И далее с каждым шагом уменьшаем вдвое

или почти вдвое числовой интервал, содержащий длину искомого фрагмента.) Так как $2^6 < 100 < 2^7$, то сделано будет 7 шагов.

Пусть m — количество цифр в найденном фрагменте. Если m равно 0 или 100, то код определён и дальнейшие этапы не нужны. Если же $1 \le m \le 99$, то переходим ко второму этапу.

Второй этап — наращивание фрагмента влево. Сначала узнаём, является ли фрагментом (m+l)-значное число $A_1=2\underbrace{1\dots 1}_m$. Если не является, то код начинается с m единиц и нужно сразу переходить к четвертому этапу. Если же A_1 — фрагмент, то последовательно ставим вопросы о числах $A_2=2c_1\underbrace{1\dots 1}_m$, $A_3=2c_2c_1\underbrace{1\dots 1}_m$, $A_4=2c_3c_2c_1\underbrace{1\dots 1}_m$, ..., где c_i - цифра, определённая на і-ом шаге, $i=1,\ 2,\ 3,\ \dots$. Продолжаем так до тех пор, пока не получим m+l отрицательных ответов подряд. Пусть k — наибольший номер, для которого $c_k=2$. Тогда код начинается с фрагмента $\underbrace{1+1}_l c_k \dots c_1\underbrace{1\dots 1}_m$, где l — некоторое целое число, $0\le l\le m$.

Третий этап — определение начального фрагмента кода. Дело сводится к нахождению числа l. Применяя, как и на первом этапе, метод двоичного поиска, ставим вопросы о числах вида $\underbrace{1+1}_r c_k \dots c_1 \underbrace{1\dots 1}_m$, где $0 \le r \le l$. Здесь потребуется не более 7 шагов, и нам станет известен начальный (k+l+m+1)-значный фрагмент.

Четвертый этап — наращивание фрагмента вправо. Последовательно делая по одному шагу, определяем с (k+l+m+2)-й по 100-ю цифры кода. (При $k+l+m+1=100\,$ этот этап не нужен.) Таким образом, для реализации всего плана потребуется не более $7+(k+m+1)+7+(100-k-l-m-1)=114\,$ шагов.

Содержание критерия	Оценка	Баллы
Задача полностью решена	++	14

Задание 8. Отрезок длины 1 двигали так, что оба его конца перемещались только по параболе $y = ax^2$, причём абсциссы соответствующих точек только возрастали. Весь отрезок первоначально находился в полуплоскости x < 0, а

в итоге оказался в полуплоскости x > 0. Найдите множество всех возможных значений параметра a.

Решение. Пусть P(p; ap²) и Q(q; aq²) – концы отрезка, причем p > q и PQ = 1. Обозначим через φ величину угла PQQ', где Q' – проекция точки Q на ось абсцисс. Тогда $q - p = -sin\varphi$, $aq^2 - ap^2 = cos\varphi$, откуда $q = -\frac{ctg\varphi}{2a} - \frac{sin\varphi}{2}$. Если функция $q = q(\varphi)$, отображающая интервал (0; π) в интервал $(-\infty; +\infty)$, строго возрастает, то отрезок длины 1 можно переместить так, как это указано в условии задачи.

Имеем $q'(\varphi) = \frac{1}{2asin^2\varphi} - \frac{cos\varphi}{2}$. Неравенство $q'(\varphi) \ge 0$ преобразуется к виду $sin^2\varphi cos\varphi \le \frac{1}{a}$, а исследование функции $u(\varphi) = sin^2\varphi cos\varphi$ показывает, что $u(\varphi) \le \frac{2}{3\sqrt{3}}$, причем равенство достигается только при $\varphi = \varphi_0 = arccos \frac{1}{\sqrt{3}}$. Это значит, что полуинтервал $(0; \frac{3\sqrt{3}}{2}]$ принадлежит множеству искомых значений a.

С другой стороны, при $a>\frac{3\sqrt{3}}{2}$ имеем $q'(\varphi_0)<0$, функция $q(\varphi)$ убывает в окрестности числа φ_0 и движение отрезка не может удовлетворять всем заданным условиям. Покажем также, что, если $a>\frac{3\sqrt{3}}{2}$, то при движении отрезка обязательно был момент, когда выполнялось равенство $\varphi=\varphi_0$. В самом деле: для p=0 имеем равенства $q=-sin\varphi$, $aq^2=cos\varphi$ и, как следствие, соотношения $cos\varphi=\frac{-1+\sqrt{4a^2+1}}{2a}>1-\frac{1}{2a}>cos\varphi_0$ и $\varphi<\varphi_0$. А при p+q=0 имеем $cos\varphi=aq^2-ap^2=0$, то есть $\varphi=\frac{\pi}{2}>\varphi_0$. Ввиду непрерывности изменения величины φ и делаем вывод о существовании указанного момента.

Ответ: $(0; \frac{3\sqrt{3}}{2}].$

Содержание критерия	Оценка	Баллы
Задача полностью решена	++	16
Множество возможных значений параметра найдено и	+-	12
доказано, что все значения из этого множества		
удовлетворяют условиям задачи, но не доказано, что		
условиям задачи не удовлетворяют значения, не входящие		
в указанное множество.		

Имеется	существені	ное про,	движение в ро	ешении задачи	-+	4
(найдена	функция	одной	переменной,	описывающая		
движение	отрезка)					