11 класс. Вариант 2

Задание 1. Набор пряжи в интернет-магазине стоит 620 руб., а при оплате за 20 или более наборов предусмотрен кешбэк в размере 15% от внесённой суммы. Как, имея изначально 30000 руб., приобрести максимально возможное количество таких наборов? Определите это количество, а также сумму, которую придётся на него потратить.

Решение. Любой набор обойдётся покупателю не меньше, чем в

 $(1-0,15)\cdot 620=527$ руб., а поскольку $30000<57\cdot 527$, то купить удастся не более 56 наборов.

С другой стороны, 56 наборов приобрести можно. Внеся сначала $20 \cdot 620$ руб. за 20 наборов, после получения кешбэка покупатель будет иметь $30000 \cdot 20 \cdot 620 + 0,15 \cdot 20 \cdot 620 = 19460$ руб. Это позволит ему внести $31 \cdot 620 = 19220$ руб. за 31 набор. Новый кешбэк составит $0,15 \cdot 19220 = 2883$ руб., и у покупателя окажется $19460 \cdot 19220 + 2883 = 3123$ руб. — сумма, достаточная для покупки ещё 5 наборов пряжи.

Ответ: 56.

Содержание критерия		Баллы
Задача полностью решена	++	10
Показан оптимальный вариант покупки, но обоснование		6
оптимальности не приведено		
Верно указано ограничение сверху, но достижимость	-+	3
максимального значения не доказана		

Задание 2. Найдите область определения функции $y = lg \frac{3-2x-x^2}{1-x^2}$.

Решение. Искомая область – решение неравенства $\frac{3-2x-x^2}{1-x^2} > 0$.

Применяя метод интервалов, находим ответ.

Ответ: $(-\infty; -3) \cup (-1; 1) \cup (1; +\infty)$.

Содержание критерия	Оценка	Баллы
Задача полностью решена	++	10
Выписаны все необходимые соотношения, но решение не	-+-	3
найдено		

Задание 3. Найдите все квадратные трёхчлены, минимальные значения каждого из которых на отрезках [0; 1], [1; 2] и [2; 3] равны 3, 6 и 7 соответственно.

Решение. Пусть трёхчлен $f(x) = ax^2 + bx + c$ удовлетворяет условиям задачи и выполнены равенства $f(x_1) = 3$, $f(x_2) = 6$, $f(x_3) = 7$, где x_1 , x_2 и x_3

— числа, принадлежащие отрезкам [0; 1], [1; 2] и [2; 3] соответственно. Из неравенств $\frac{f(x_1)+f(x_3)}{2} < 6$ и $1 \le \frac{x_1+x_3}{2} \le 2$ тогда получается, что $\frac{f(x_1)+f(x_3)}{2} \le f\left(\frac{x_1+x_3}{2}\right)$. Следовательно, ветви параболы y=f(x) направлены вниз.

Неравенства $f(x_1) < f(x_2) < f(x_3)$ показывают, что f(x) возрастает при $x \le 2$, а потому $x_1 = 0$, $x_2 = 1$, $f(x_1) = c = 3$, $f(x_2) = a + b + c = 6$, откуда b = 3 - a и $f(x) = ax^2 + (3 - a)x + 3$.

Заметим теперь, что $f(3)=6a+12\geq f(x_3)=7$. Поэтому $a\geq -\frac{5}{6}$. При $a=-\frac{5}{6}$ имеем трёхчлен $f_0(x)=-\frac{5}{6}x^2+\frac{23}{6}x+3$, минимальное значение которого на отрезке [2; 3] равно 7.

Если же $a > -\frac{5}{6}$, то $f(x) = f_0(x) + (a + \frac{5}{6})(x^2 - x) > f_0(x)$ при любом x > 1. Это значит, что трёхчлен $f_0(x)$ – единственный, удовлетворяющий всем требованиям.

Ответ:
$$-\frac{5}{6}x^2 + \frac{23}{6}x + 3$$
.

Содержание критерия	Оценка	Баллы
Задача полностью решена	++	12
Найден требуемый многочлен, но обоснование того, что он		6
единствен, содержит пробелы		
Найден требуемый многочлен, но обоснование того, что он	-+	4
единствен, содержит существенные пробелы		
Найден требуемый многочлен, но обоснование	_ *	1
единственности отсутствует		

Задание 4. Все вершины тетраэдра ABCD равноудалены от точки O. Зная, что AB = CD = a, BC = AD = b, AC = BD = c, найдите радиус сферы, проходящей через O и через середины медиан треугольника ABC.

Решение. Пусть в треугольнике ABC проведены медианы AA_1 , BB_1 и CC_1 , середины которых обозначены через A_2 , B_2 и C_2 соответственно, а точка пересечения этих медиан — через M. Докажем, что тетраэдр $OA_2B_2C_2$ является образом тетраэдра ABCD при гомотетии центром M и коэффициентом $\frac{1}{4}$.

Легко установить, что $\overrightarrow{MA_2} = \frac{1}{4}\overrightarrow{MA}$, $\overrightarrow{MB_2} = \frac{1}{4}\overrightarrow{MB}$ и $\overrightarrow{MC_2} = \frac{1}{4}\overrightarrow{MC}$. Для доказательства равенства $\overrightarrow{MO} = \frac{1}{4}\overrightarrow{MD}$ рассмотрим отрезок C_1C_1' , где C_1' середина ребра CD. Этот отрезок является высотой, проведённой к основанию, в каждом из двух равных равнобедренных треугольников - $AC_1'B$ и CC_1D ; ясно, что середина отрезка C_1C_1' равноудалена от точек A, B, C и D, а потому совпадает с точкой O. Следовательно, плоскость OCD содержит точку C_1 , а

значит, и отрезок CC_1 с точкой M на нём. По аналогичным причинам точку M содержат плоскости OAD и OBD. Поэтому M — точка пересечения прямой OD с плоскостью ABC. Остаётся заметить, что тетраэдры OABC, OABD, OBCD и OACD равны, объём тетраэдра OABC составляет $\frac{1}{4}$ объёма тетраэдра ABCD, откуда и выводится равенство $\overrightarrow{MO} = \frac{1}{4}\overrightarrow{MD}$.

Из доказанного следует, что искомый радиус равен $\frac{r}{4}$, где r – радиус описанной сферы тетраэдра ABCD. Найдём r.

Достроим тетраэдр ABCD до параллелепипеда APBQRDSC (AR//PD//BS//QC), проведя через его противоположные рёбра пары параллельных плоскостей. В силу равенств PQ=CD=AB, PS=AC=BD и PR=BC=AD все грани этого параллелепипеда будут прямоугольниками, а сам параллелепипед — прямоугольным. Диаметр его описанной сферы равен $2r=\sqrt{AP^2+AQ^2+AR^2}$, а поскольку $AP^2+AQ^2=AB^2=a^2$, $AP^2+AR^2=BC^2=b^2$ и $AQ^2+AR^2=c^2$, то $r=\frac{1}{4}\sqrt{2(a^2+b^2+c^2)}$, $\frac{r}{4}=\frac{1}{16}\sqrt{2(a^2+b^2+c^2)}$.

Ответ: $\frac{1}{16}\sqrt{2(a^2+b^2+c^2)}$.

	Co	одержани	е критерия	[Оценка	Баллы
Задача	полностью	решена:	получен	верный	ответ	И	++	12
приведено полное обоснование								

Задание 5. Решите уравнение $2 - 6^{\frac{1}{2} + \log_6 \sin x} = 2^{\frac{1}{2} + \log_2 \cos x}$.

Решение. ОДЗ неизвестного задаётся системой неравенств $\sin x > 0$, $\cos x > 0$. Уравнение $2 - \sqrt{6} \sin x = \sqrt{2} \cos x$, являющееся следствием исходного, преобразуется к виду $\cos(x - \frac{\pi}{3}) = \frac{\sqrt{2}}{2}$. Корни последнего описываются формулой $x = \frac{\pi}{3} \pm \frac{\pi}{4} + 2\pi n$, где $n = 0, \pm 1, \pm 2, \dots$. Проверка оставляет только числа вида $\frac{\pi}{3} - \frac{\pi}{4} + 2\pi n = \frac{\pi}{12} + 2\pi n$.

Ответ: $\frac{1}{12}\pi + 2\pi n$, где $n = 0, \pm 1, \pm 2, \dots$

Содержание критерия		Баллы
Задача полностью решена: получен верный ответ и	++	12
приведено полное обоснование		
Ответ содержит все верные решения и посторонние корни,	-+	3
ОДЗ указана		
ОДЗ не найдена, ответ содержит посторонние корни	_ *	1

Задание 6. В остроугольном треугольнике ABC проведена высота BH, а на сторонах AB и BC выбраны точки M и N так, что прямые HM и HN симметричны друг другу относительно прямой BH. Прямые MN и AC пересекаются в точке K. Найдите длину отрезка AK, если AH=6, HC=9.

Решение. Пусть M' и N' - проекции точек M и N на прямую AC, m, n, h и x – длины отрезков M'H, HN', BH и HK соответственно. Тогда M'K = x - m, N'K = x + n, MM' = km, NN' = kn, где k – тангенс каждого из углов MHM' NHN' (равенство этих углов следует непосредственно из условия задачи).

В силу подобия треугольников MKM' и NKN' имеем равенство $\frac{x-m}{x+n} = \frac{km}{kn}$, откуда $x = \frac{2mn}{n-m}$. Пользуясь, далее тем, что треугольник AMM' подобен треугольнику ABH, а треугольник CNN'- треугольнику CBH, записываем равенства $\frac{6-m}{6} = \frac{km}{h}$ и $\frac{9-n}{9} = \frac{kn}{h}$; из них следует, что $\frac{mn}{n-m} = 18$. Поэтому $x = 2 \cdot 18 = 36$, AK = 36 - 6 = 30.

Ответ: 30.

Содержание критерия		Баллы
Задача полностью решена: получен верный ответ и	++	14
приведено полное обоснование		
Выписаны все необходимые соотношения, но верный	-+	6
ответ не получен/ Приведен верный ответ, но обоснование		
содержит пробелы		

Задание 7. Неизвестный 100-значный код X составлен из цифр 1 и 2. Характеристикой произвольного 100-значного числа Y, также составленного из единиц и двоек, назовём количество разрядов, в которых цифры числа Y совпадают с цифрами кода. Докажите, что, узнав характеристики некоторых 80 чисел $Y_1, ..., Y_{80}$, можно гарантированно определить X.

Решение. Опишем способ определения кода $X = \overline{x_1 \dots x_{100}}$, где x_1, \dots, x_{100} – цифры. Для этого разобъём X на 20 частей по 5 цифр: $X_1 = \overline{x_1 x_2 x_3 x_4 x_5}$, $X_2 = \overline{x_6 x_7 x_8 x_9 x_{10}}$, ..., $X_{20} = \overline{x_{96} x_{97} x_{98} x_{99} x_{100}}$. Через p_i будем обозначать характеристику числа Y_i , $i=1,\dots,80$. Положим $Y_1 = \underbrace{1\dots 1}_{100}$. Тогда по характеристикам чисел Y_1 , $Y_2 = 22111\underbrace{1\dots 1}_{95}$, $Y_3 = 12211\underbrace{1\dots 1}_{95}$, $Y_4 = 11221\underbrace{1\dots 1}_{95}$ и $Y_5 = 12121\underbrace{1\dots 1}_{95}$ гарантированно определяется X_1 . В самом деле: если $p_k \neq p_1$ для какого-нибудь k от 2 до 4, то разность $p_k - p_1$ равна 2 или -2. В первом случае имеем равенства $x_{k-1} = x_k = 2$, во втором - $x_{k-1} = x_k = 1$; легко видеть, что в обоих случаях определяются и все остальные цифры, составляющие X_1 . Если же $p_1 = p_2 = p_3 = p_4$, то X_1 равно либо 12121, либо 12122, либо 21211, либо 21212. Первый из этих случаев имеет

место при $p_5 = p_1 + 2$, второй — при $p_5 = p_1 + 1$, третий — при $p_5 = p_1 - 2$, четвёртый — при $p_5 = p_1 - 3$.

Аналогично, по характеристикам чисел Y_1 , $Y_6 = \underbrace{1\dots 1}_{5} 22111 \underbrace{1\dots 1}_{90}$, $Y_7 = \underbrace{1\dots 1}_{5} 12211 \underbrace{1\dots 1}_{90}$, $Y_8 = \underbrace{1\dots 1}_{5} 11221 \underbrace{1\dots 1}_{90}$ и $Y_9 = \underbrace{1\dots 1}_{5} 12121 \underbrace{1\dots 1}_{90}$ определяем X_2 и так далее, до X_{19} . Заметим, что здесь уже будет известно количество единиц в X_{20} (поскольку будут известны число p_1 и цифры x_1, \dots, x_{95}), и для определения X_{20} окажется достаточным знание характеристик всего трёх чисел, например, $Y_{78} = \underbrace{1\dots 1}_{95} 22111$, $Y_{79} = \underbrace{1\dots 1}_{95} 21211$ и $Y_{80} = \underbrace{1\dots 1}_{95} 21121$.

Задание 8. Отрезок длины d двигали так, что оба его конца перемещались только по параболе $y = x^2$, причём абсциссы соответствующих точек только возрастали. Весь отрезок первоначально находился в полуплоскости x < 0, а в итоге оказался в полуплоскости x > 0. Найдите все возможные значения d.

Решение. Пусть $P(p; p^2)$ и $Q(q; q^2)$ – концы отрезка, причём p > q, PQ = d. Обозначим через φ величину угла PQQ', где Q' - проекция точки Q на ось абсцисс. Тогда $q - p = -d \sin\varphi$, $q^2 - p^2 = d \cos\varphi$, откуда $q = -\frac{ctg\varphi}{2} - \frac{d \sin\varphi}{2}$. Выясним, при каких d функция $q = q(\varphi)$ строго возрастает на интервале $(0; \pi)$.

Имеем $q'(\varphi) = \frac{1}{2\sin^2\varphi} - \frac{d\cos\varphi}{2}$. Неравенство $q'(\varphi) \ge 0$ преобразуется к виду $\sin^2\varphi \cos\varphi \le \frac{1}{d}$, а исследование функции $u(\varphi) = \sin^2\varphi \cos\varphi$ показывает, что $u(\varphi) \le \frac{2}{3\sqrt{3}}$, причём равенство достигается только при $\varphi = \varphi_0 = arc \cos\frac{1}{\sqrt{3}}$. Таким образом, достаточным условием для указанного в задаче перемещения является неравенство $d \le \frac{3\sqrt{3}}{2}$.

Покажем, что если $d>\frac{3\sqrt{3}}{2}$, то при движении отрезка из полуплоскости x<0 в полуплоскость x>0 обязательно есть момент, когда выполняется равенство $\varphi=\varphi_0$. В самом деле: при p=0 имеем $q=-d\sin\varphi,$ $q^2=d\cos\varphi$ и, как следствие, соотношения $\cos\varphi=\frac{-1+\sqrt{4d^2+1}}{2d}>1-\frac{1}{2d}>\cos\varphi_0$ и $\varphi<\varphi_0$. А при p+q=0 имеем $\cos\varphi=0$, то есть $\varphi=\frac{\pi}{2}>\varphi_0$. Ввиду непрерывности изменения величины φ и делаем вывод о существовании указанного момента.

Но $q'(\varphi_0) < 0$ и $q(\varphi)$ убывает в некоторой окрестности числа φ_0 . Поэтому движение отрезка не может удовлетворять всем заданным условиям.

Ответ: $(0; \frac{3\sqrt{3}}{2}).$

Содержание критерия		Баллы
Задача полностью решена	++	16
Множество возможных значений параметра найдено и	+-	12
доказано, что все значения из этого множества		
удовлетворяют условиям задачи, но не доказано, что		
условиям задачи не удовлетворяют значения, не входящие		
в указанное множество.		
Имеется существенное продвижение в решении задачи	-+	4
(найдена функция одной переменной, описывающая		
движение отрезка)		